Stereoselective Synthesis of Mixed Acetal Glycosides by Reaction of Tri-O-acetyl-N-(2,4-dinitrophenyl)-α-D-glucosaminyl Bromide with Alcohol in Acetone¹⁾

Shinkiti Koto,* Shigeru Inada, Tomoko Narita, Naohiko Morishima, and Shonosuke Zen

School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Tokyo 108 (Received January 14, 1982)

Synopsis. Some mixed acetal glycosides were stereoselectively synthesized by the reaction of 3,4,6-tri-O-acetyl-2-deoxy-2-(2,4-dinitroanilino)- α -D-glucopyranosyl bromide with alcohols in acetone containing $Hg(CN)_2$, $HgBr_2$, and tetrabutylammonium bromide at room temperature. When t-butyl alcohol was used, a novel enol glycoside of acetone was formed.

3,4,6-Tri-O-acetyl-2-deoxy-2-(2,4-dinitroanilino)-α-D-glucopyranosyl bromide (1)²⁾ has been a useful reagent for synthesizing various α-D-glucosaminides.³⁾ This report presents our findings that a homogeneous reaction of 1 with methanol (MeOH) in acetone (Me₂CO) in the presence of Hg(CN)₂, HgBr₂, and tetrabutylammonium bromide (n-Bu₄NBr) at room temperature gave a novel acetal glycoside (2) (Eq. 1) in a 54% yield (Table 1, Run 2).⁴⁾ The reaction was highly stereoselective and gave no methyl glycosides (3a and 3b). The use of solvents such as 1,2-dichloroethane (Run 9) and nitromethane (Run 10) as well as an excess of MeOH (Run 11) caused the

$$\begin{array}{c}
AcO & OAc \\
AcO & NH_{Br} \\
DNP & DNP
\end{array}$$
+ ROH
$$\begin{array}{c}
Hg(CN)_2 \\
Hg Br_2 \\
Bu_4NBr \\
Me_2CO
\end{array}$$
AcO
$$\begin{array}{c}
OAc \\
AcO \\
NH \\
DNP
\end{array}$$
OR
$$\begin{array}{c}
OR \\
DNP \\
Me
\end{array}$$
Me
$$\begin{array}{c}
Me_2CO
\end{array}$$
Me
$$\begin{array}{c}
Me_2CO
\end{array}$$
Me
$$\begin{array}{c}
AcO \\
NH \\
DNP
\end{array}$$
Me
$$\begin{array}{c}
OR \\
DNP
\end{array}$$
Me
$$\begin{array}{c}
Me
\end{array}$$
Me

TABLE 1. RESULTS OF EXPERIMENTS USING METHANOL^{a)}

Run	Hg(CN) ₂ (equiv.)	HgBr ₂ (equiv.)	n-Bu₄NBr	Yield/%b)		
			(equiv.)	2	3a+3b	
1	0.5	0.5	0.67	31	0	
2	0.5	0.5	1.0	54	0	
3	0.5	0.5	1.5	32	13	
4	0.5	0.5	2.0	16	32	
5	0.5	0.5		0	8	
6		_	1.0	0	35	
7	1.0	********	1.0	69	18	
8		1.0	1.0	0	20	
9c)	0.5	0.5	1.0	35f)	21	
10 ^d)	0.5	0.5	1.0	60^{f}	8	
11e)	0.5	0.5	1.0	53	19	

a) Reactions were conducted in 0.1 mmol scale for 6 h at room temperature. b) Yields were determined by measuring ¹H NMR (60 MHz) of product mixtures (see Experimental). c) Me₂CO (66 μ l, 9.0 equiv.) and (CH₂Cl)₂ (0.46 ml) were used. d) Me₂CO (66 μ l, 9.0 equiv.) and MeNO₂ (0.46 ml) was used. e) Excess MeOH (12 μ l, 3.0 equiv.) was used. f) A very small peak of the β -anomer of 2 was observed at δ 3.01.

formation of **3a** and **3b**. The use of the ternary mixture was essential for the acetalization without forming **3a** and **3b** (Runs 5—8); the optimal proportion of Hg(CN)₂, HgBr₂, and *n*-Bu₄NBr to **1** found is 0.5: 0.5:1.0 (Runs 1—4).

Incidentally, 1-methoxy-1-methylethyl group, known as a labile protecting group of hydroxyl group,⁵⁾ was readily removed from **2** by a mild acid hydrolysis without the removal of the acetyl groups and survived through the *O*-deacetylation and the *N*-dedinitrophenylation in basic media.

2,3,4,6-Tetra-O-acetyl- α -D-glucopyranosyl bromide does not undergo such acetalization reaction. For 1, Me₂CO is the sole ketone which gives the acetal glycoside in an acceptable yield, aldehydes such as propional are also unsuitable. Cyclohexanol and 5α -cholestan- 3β -ol gave the respective acetal glycosides (4 and 5). However, t-butyl alcohol did not afford such a type of glycoside but isopropenyl 3,4,6-tri-O-acetyl-2-deoxy-2-(2,4-dinitroanilino)- α -D-glucopyranoside (6), a novel enol glycoside, 6) was formed.

Experimental

The instruments used were identical with those described earlier. Osolid compounds, $1,^2$ Hg(CN)₂ (Wako), HgBr₂ (Wako), n-Bu₄NBr (Tokyo Kasei), and 5α -cholestan- 3β -ol (Tokyo Kasei), were stored in vacuo over P₂O₅ before use. The physical and analytical data for the acetals are in Table 2.

1-Methoxyl-1-methylethyl 3,4,6-Tri-O-acetyl-2-deoxy-2-(2,4-dinitroanilino)-α-D-glucopyranoside (2). MeOH (40 μl, 1.0 mmol) and Me₂CO (5.3 ml) were successively added to a mixture of 1 (534 mg, 1.0 mmol), Hg(CN)₂ (126 mg, 1.0 mmol), HgBr₂ (180 mg, 1.0 mmol), and n-Bu₄NBr (322 mg, 1.0 mmol). After stirring for 24 h at room temperature and adding water (1.0 ml), the mixture was evaporated at 30 °C under diminished pressure and chromatographed on silica gel (Kanto Kagaku) using a mixture of benzene and butanone (10:1). The faster-moving band afforded 2 (310.5 mg, 57%); $\delta_{\rm H}$ (CDCl₃, Me₄Si): 1.50 (s, 6H, CMe), 1.80 (s, 3H, OAc),

Table 2. Yields^{a)} and physical data of acetals

Compd	Yield	Mp(recrystallized fromb)		$[\alpha]_{\mathrm{D}}^{20}/^{\circ}$	Mol	Found(Calcd)(%)		
	%	$ heta_{ m m}/^{ m c}{ m C}$		(c, Me_2CO)	formula	$\widehat{\mathbf{C}}$	H	N
2	54	174—176	(C/H, needles)	+12(1.0)	$C_{22}H_{29}N_3O_{13}$	48.38 (48.62)	5.29 (5.38)	7.89 (7.73)
4	69	173—175	(I, needles)	+9(0.5)	$\mathrm{C_{27}H_{37}N_3O_{13}}$	52.88 (53.02)	$5.81 \\ (6.10)$	6.71 (6.87)
5	64	228—230(decomp)	(E, needles)	+71(0.6)	$\mathrm{C_{40}H_{73}N_{3}O_{13}}$	$63.93 \\ (64.05)$	8.10 (8.17)	4.58 (4.67)

a) Reaction time was 6 h. b) C: Chloroform, E: ethyl acetate, H: hexane, I: disopropyl ether.

2.06 (s, 3H, OAc), 2.10 (s, 3H, OAc), 3.19 (s, 3H, OMe), 7.07 (d, 1H, $J_{\rm BC}=10$ Hz, $H_{\rm B}$), 8.27 (q, 1H, $H_{\rm C}$), 8.72 (d, 1H, J=10 Hz, NH), 9.10 (d, 1H, $J_{\rm AB}=3.5$ Hz, $H_{\rm A}$); $\delta_{\rm C}$ (CDCl₃, Me₄Si)⁸⁾ 20.6 (3C, OAc), 24.6, 26.3, 50.0 (OMe), 55.3 (C-2), 62.1 (C-6), 67.9, 68.4, 72.9, 90.1 (C-1), 103.3 (C- α), 114.5, 124.3, 130.0, 131.0, 136.7, 147.5, 169.6, 169.9, 170.7. The slower-moving band gave 3,4,6-tri-O-acetyl-2-deoxy-2-(2,4-dinitroanilino)- α -D-glucopyranose (7) (170.5 mg, 38%), which was identified with the sample prepared by the authentic route.²⁾

Heating 2 (52.6 mg, 0.097 mmol) in aq acetic acid (80%, 0.5 ml) at 70 °C for 40 min furnished 7 (42.5 mg, 93%). 1-Methoxy-1-methylethyl 2-Deoxy-2-(2,4-dinitroanilino)- α -Deglucopyranoside (8). The treatment of 2 (200 mg, 0.37 mmol) with ammoniacal methanol (38 g, 21%) at room temperature overnight gave 8 (ca. 150 mg, quant.); mp 160—162 °C, [α]₂ +4.5° (c 1.0, Me₂CO); δ _H ((CD₃)₂CO, Me₄Si) 1.43 (s, 3H, CMe), 1.48 (s, 3H, CMe), 3.16 (s, 3H, OMe), 5.40 (d, 1H, $J_{1,2}$ =3.5 Hz, H-1), 7.53 (d, 1H, J_{BC} =10 Hz, H_B), 8.25 (q, 1H, H_C), 8.97 (d, 1H, J_{AB} =2.5 Hz); δ _C ((CD₃)₂CO, Me₄Si) 24.9, 26.7, 49.8 (OMe), 57.8 (C-2), 62.4 (C-6), 71.5, 73.4, 75.1, 91.2 (C-1), 102.8 (C- α), 117.2, 124.1, 130.2, 130.9, 136.5, 149.7. Found: C, 45.79; H, 5.44; N, 10.04%. Calcd for C₁₆H₂₃N₃O₉: C, 46.04; H, 5.55; N, 10.07%.

1-Methoxy-1-methylethyl 2-Amino-2-deoxy-α-D-glucopyranoside (9). The treatment of 8 (91.8 mg, 0.22 mmol) with Dowex 1×2 (1 ml) in aq Me₂CO (67%, 5 ml) for 6 h at room temperature afforded 9 (41.1 g, 74%); mp 189—191 °C (decomp), $[\alpha]_D^{10} + 139^\circ$ (ε 0.3, H₂O); δ_H (D₂O, Me₄Si (ext.)) 1.90 (s, 6H, CMe), 3.16 (dd, 1H, J=3.9 and 9.6 Hz, H-2), 3.76 (s, 3H, OMe) 5.64 (d, 1H, J=3.9 Hz H-1); δ_C (D₂O, Me₄Si (ext.)) 25.2, 26.2, 50.7 (OMe), 56.5 (C-2), 62.0 (C-6), 71.2 (C-4), 73.6 (C-5), 75.2 (C-3), 93.8 (C-1), 103.9 (C-α). Found: C, 47.65; H, 8.52; N, 5.55%. Calcd for C₁₀H₂₁NO₆: C, 47.80; H, 8.42; N, 5.57%.

Procedure for the Acetalization to Obtain the Data for Table 1. A round-bottomed flask containing weighed solid compounds (1 and, optionally, $Hg(CN)_2$, $HgBr_2$ and $n\text{-Bu}_4NBr$) was kept in vacuo over P_2O_5 for 30 min. Anhydrous solvent (when necessary), Me_2CO , and MeOH were successively injected into this vessel, stoppered with a rubber-cap. The reaction was stirred and quenched by adding water (1 drop). After evaporation at 30 °C, the mixture was chromatographed as above. Fractions containing 2, 3a, and 3b were combined to give a glass whose ¹H NMR spectrum usually showed three singlets of methoxyl groups of 2, 3a, and 3b at δ 3.20, 3.55, and 3.50 in CDCl₃ with Me_4Si (Table 1).

Attempted Acetalization Using t-Butyl Alcohol. Me₂CO (1.0 ml) was injected into a rubber-stoppered flask containing t-BuOH (15.2 mg, 0.2 mmol), 1 (106.8 mg, 0.2 mmol), Hg(CN)₂ (25.2 mg, 0.1 mmol), HgBr₂ (36.0 mg, 0.1 mmol), and n-Bu₄NBr (64.4 mg, 0.2 mmol). After having been

stirred for 6 h at room temperature, the mixture was evaporated and chromatographed as above. The faster-moving major band gave isopropenyl 3,4,6-tri-O-acetyl-2-deoxy-2-(2,4-dinitroanilino)- α -D-glucopyranoside (**6**) (37.1 mg, 36%); mp 199—202 °C, $[\alpha]_{20}^{10}$ —8.6° (c 1.3, Me₂CO); $\delta_{\rm H}$ (CDCl₃, Me₄Si) 1.77 (s, 3H, OAc), 1.90 (s, 3H, CMe), 1.97 (s, 3H, OAc), 2.03 (s, 3H, OAc), 7.10 (d, 1H, $J_{\rm BC}$ =9 Hz, H_B), 8.20 (q, 1H, H_C), 8.80 (d, 1H, J=12 Hz, NH), 9.07 (d, 1H, $J_{\rm AB}$ =3 Hz, H_A); $\delta_{\rm C}$ (CDCl₃, Me₄Si) 20.2 (CMe), 20.6 (3C, Ac), 55.1 (C-2), 61.5 (C-6), 67.9, 68.3, 73.0, 88.7 (C- β), 94.7 (C-1), 114.4, 124.3, 130.0, 131.3, 136.9, 147.6, 157.1 (C- α) 169.7 (2C, Ac), 170.7 (Ac). Found: C, 48.94; H, 4.84; N, 8.41%. Calcd. for C₂₁H₂₅N₃O₁₂: C, 49.32; H, 4.93; H, 8.22%.

Compound **6** (45.7 mg, 0.09 mmol) was treated with dil. sodium methoxide in methanol (0.15%, 2 ml) at room temperature overnight. After NH₄Cl had been added, the mixture was evaporated and chromatographed to give propenyl 2-deoxy-2-(2,4-dinitroanilino)- α -D-glucopyranoside (**10**) (35 mg, 94%); mp 161—165 °C, [α]₀²⁰—1.0° (ϵ 1.4, Me₂CO); δ _H ((CD₃)₂CO, Me₄Si) 1.95 (s, 3H, CMe), 5.48 (d, 1H, $J_{1,2}$ =3.5 Hz, H-1), 7.57 (d, 1H, J_{BC} =9 Hz, H_B), 8.23 (q, 1H, H_C), 8.95 (d, 1H, J_{AB} =3 Hz, H_A); δ _C ((CD₃)₂CO, Me₄Si)⁶) 20.4 (CMe), 58.1 (C-2), 62.0 (C-6), 71.0, 74.4, 75.6, 88.3 (C- β), 96.6 (C-1), 117.3, 124.4, 130.5, 131.5, 131.6, 137.2, 150.1, 158.4 (C- α). Found: N, 10.42%. Calcd for C₁₅H₁₉N₃O₉: N, 10.90%.

References

- 1) Presented at the 37th National Meeting of the Chemical Society of Japan, April 1978, Yokohama. Recently, a stereoselective synthesis of mixed acetal glucosides has been reported (L.-T. Tietze and R. Fischer, *Tetrahedron Lett.*, **22**, 3239 (1981); *Angew. Chem.*, *Int. Ed. Engl.*, **20**, 969 (1981)).
 - 2) P. F. Lloyd and M. Stacey, Tetrahedron, 9, 116 (1960).
- 3) K. Igarashi, Adv. Carbohydr. Chem. Biochem., **34**, 243 (1977), S. Koto, S. Inada, and S. Zen, Chem. Lett., **1980**, 183.
- 4) A. N. de Belder, P. J. Garegg, B. Lindberg, G. Petropavlovskii, and O. Theander, *Acta Chem. Scand.*, **16**, 623 (1962); H.-M. Dettinger, J. Lehmann, and K. Wallenferls, *Carbohydr. Res.*, **87**, 63 (1980).
- 5) A. F. Klug, K. G. Untch, and J. H. Fried., J. Am. Chem. Soc., 94, 7827 (1977).
- 6) T. D. Perrine, C. P. J. Glaudemans, R. K. Ness, J. Kyle, and H. G. Fletcher, Jr., J. Org. Chem., 32, 664 (1967); L. Coffier, G. Remy, and G. Descotes, Synthesis, 1979, 711.
- 7) S. Koto, N. Morishima, and S. Zen, *Bull. Chem. Soc. Jpn.*, **52**, 784 (1979).
- 8) Assignments were carried out by observing off-resonance decoupling spectra.